ARTICLE
7 February 2023

Generative AI Innovation: Capturing Value Throughout The Tech Stack

FL
Foley & Lardner

Contributor

Foley & Lardner LLP looks beyond the law to focus on the constantly evolving demands facing our clients and their industries. With over 1,100 lawyers in 24 offices across the United States, Mexico, Europe and Asia, Foley approaches client service by first understanding our clients’ priorities, objectives and challenges. We work hard to understand our clients’ issues and forge long-term relationships with them to help achieve successful outcomes and solve their legal issues through practical business advice and cutting-edge legal insight. Our clients view us as trusted business advisors because we understand that great legal service is only valuable if it is relevant, practical and beneficial to their businesses.
Generative AI technologies, perhaps most prominently ChatGPT, have captured the world's attention in ways that cannot be dismissed as hype or narrow use cases.
United States Technology

Generative AI technologies, perhaps most prominently ChatGPT, have captured the world's attention in ways that cannot be dismissed as hype or narrow use cases. This a16z article describes the emerging tech stack for these technologies, highlighting how a significant portion of generative AI revenues currently go to infrastructure vendors, rather than companies that provide the end-user facing solutions where value may be most evident.

However, it may be difficult to easily isolate where the greatest value lies in AI technologies. Stepping back a bit, the AI transformation of the last ten years has been driven by advances in three different areas coming together: (1) increased computing power and access to this power; (2) access to large amounts of relevant data; and (3) refinements to models and other key AI technologies.

Today, computing power may still be the rate-limiting factor for making useful generative AI accessible to a broad user base, particularly given the size of models like GPT-3 and the amount of data that they're trained with. Nevertheless, this leaves opportunities for new market entrants to refine generative AI models so that they depend less on computing power; in addition, innovators may be able to deliver vertical-specific solutions with fine-tuned models that provide greater value to customers without (significantly) increasing computing resource costs. In other words, even if there are no "systematic moats in generative AI" today, there is still plenty of time for the balance of value capture to shift throughout the tech stack as businesses find new ways to deliver impactful solutions.

The content of this article is intended to provide a general guide to the subject matter. Specialist advice should be sought about your specific circumstances.

Mondaq uses cookies on this website. By using our website you agree to our use of cookies as set out in our Privacy Policy.

Learn More